Send to

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2011 Mar 11;286(10):7737-43. doi: 10.1074/jbc.C110.209288. Epub 2011 Jan 21.

Structure-based search reveals hammerhead ribozymes in the human microbiome.

Author information

  • 1Department of Pharmaceutical Sciences, University of California, Irvine, California 92697, USA.


Deep sequencing of viral or bacterial nucleic acids monitors the presence and diversity of microbes in select populations and locations. Metagenomic study of mammalian viromes can help trace paths of viral transmissions within or between species. High throughput sequencing of patient and untreated sewage microbiomes showed many sequences with no similarity to genomic sequences of known function or origin. To estimate the distribution of functional RNAs in these microbiomes, we used the hammerhead ribozyme (HHR) motif to search for sequences capable of assuming its three-way junction fold. Although only two of the three possible natural HHR topologies had been known, our analysis revealed highly active ribozymes that terminated in any of the three stems. The most abundant of these are type II HHRs, one of which is the fastest natural cis-acting HHR yet discovered. Altogether, 13 ribozymes were confirmed in vitro, but only one showed sequence similarity to previously described HHRs. Sequences surrounding the ribozymes do not generally show similarity to known genes, except in one case, where a ribozyme is immediately preceded by a bacterial RadC gene. We demonstrate that a structure-based search for a known functional RNA is a powerful tool for analysis of metagenomic datasets, complementing sequence alignments.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center