Send to

Choose Destination
Plant J. 2011 May;66(3):528-40. doi: 10.1111/j.1365-313X.2011.04510.x. Epub 2011 Mar 1.

A fast brassinolide-regulated response pathway in the plasma membrane of Arabidopsis thaliana.

Author information

Center for Plant Molecular Biology, Department of Plant Physiology, University of Tübingen, Auf der Morgenstelle 1, 72076 Tübingen, Germany.


To understand molecular processes in living plant cells, quantitative spectro-microscopic technologies are required. By combining fluorescence lifetime spectroscopy with confocal microscopy, we studied the subcellular properties and function of a GFP-tagged variant of the plasma membrane-bound brassinosteroid receptor BRI1 (BRI1-GFP) in living cells of Arabidopsis seedlings. Shortly after adding brassinolide, we observed BRI1-dependent cell-wall expansion, preceding cell elongation. In parallel, the fluorescence lifetime of BRI1-GFP decreased, indicating an alteration in the receptor's physico-chemical environment. The parameter modulating the fluorescence lifetime of BRI1-GFP was found to be BL-induced hyperpolarization of the plasma membrane. Furthermore, for induction of hyperpolarization and cell-wall expansion, activation of the plasma membrane P-ATPase was necessary. This activation required BRI1 kinase activity, and was mediated by BL-modulated interaction of BRI1 with the P-ATPase. Our results were used to develop a model suggesting that there is a fast BL-regulated signal response pathway within the plasma membrane that links BRI1 with P-ATPase for the regulation of cell-wall expansion.

[Indexed for MEDLINE]
Free full text

Publication type, MeSH terms, Substances, Grant support

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center