Send to

Choose Destination
Circ Cardiovasc Genet. 2011 Feb;4(1):74-80. doi: 10.1161/CIRCGENETICS.110.957290. Epub 2011 Jan 20.

Physical activity modifies the effect of LPL, LIPC, and CETP polymorphisms on HDL-C levels and the risk of myocardial infarction in women of European ancestry.

Author information

Division of Preventive Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA.



Recent genome-wide association studies have identified common variants associated with high-density lipoprotein cholesterol (HDL-C). Whether these associations are modified by physical activity, which increases HDL-C levels and reduces the risk of cardiovascular disease, is uncertain.


In a prospective cohort study of 22 939 apparently healthy US women of European ancestry, we selected 58 single nucleotide polymorphisms (SNPs) in 9 genes that demonstrated genome-wide association (P<5×10(-8)) with HDL-C levels and sought evidence of effect modification according to levels of physical activity. Physical activity modified the effects on HDL-C of 7 SNPs at 3 loci, and the strongest evidence of effect was observed for rs10096633 at lipoprotein lipase (LPL), rs1800588 at hepatic lipase (LIPC), and rs1532624 at cholesteryl ester transfer protein (CETP) (each P-interaction<0.05). The per-minor-allele increase in HDL-C for rs1800588 at LIPC and rs1532624 at CETP was greater in active than inactive women, whereas the reverse was observed for rs10096633 at LPL. Minor-allele carrier status at the LPL SNP was associated with a reduced risk of myocardial infarction in active (hazard ratio, 0.51; 95% confidence interval 0.30-0.86) but not among inactive women (hazard ratio 1.13; 95% confidence interval 0.79 to 1.61; P-interaction=0.007). By contrast, carrier status at the CETP SNP was associated with a reduced risk of myocardial infarction regardless of activity level (hazard ratio, 0.72; 95% confidence interval, 0.57 to 0.92; P-interaction=0.71). No association between LIPC SNP carrier status and myocardial infarction risk was noted.


The effects of common variants in the LPL, LIPC, and CETP genes on HDL-C levels are modified by physical activity. For a common variant in LPL, the impact on myocardial infarction varied by activity level, whereas the effects of a common variant in CETP on myocardial infarction risk did not.

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Atypon Icon for PubMed Central
Loading ...
Support Center