Send to

Choose Destination
ACS Nano. 2011 Feb 22;5(2):1259-66. doi: 10.1021/nn1029229. Epub 2011 Jan 20.

Smart drug delivery through DNA/magnetic nanoparticle gates.

Author information

Departamento de Química Inorgánica y Bioinorgánica, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain.


Mesoporous silica nanoparticles can be modified to perform on-demand stimuli-responsive dosing of therapeutic molecules. The silica network was loaded with iron oxide superparamagnetic nanocrystals, providing the potential to perform targeting and magnetic resonance imaging. Single-stranded DNA was immobilized onto the material surface. The complementary DNA sequence was then attached to magnetic nanoparticles. The present work demonstrates that DNA/magnetic nanoparticle conjugates are able to cap the pores of the magnetic silica particles upon hybridization of both DNA strands. Progressive double-stranded DNA melting as a result of temperature increase gave rise to uncapping and the subsequent release of a mesopore-filled model drug, fluorescein. The reversibility of DNA linkage results in an "on-off" release mechanism. Moreover, the magnetic component of the whole system allows reaching hyperthermic temperatures (42-47 °C) under an alternating magnetic field. This feature leaves open the possibility of a remotely triggered drug delivery. Furthermore, due to its capacity to increase the temperature of the surrounding media, this multifunctional device could play an important role in the development of advanced drug delivery systems for thermochemotherapy against cancer.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for American Chemical Society
Loading ...
Support Center