Send to

Choose Destination
See comment in PubMed Commons below
J Invest Dermatol. 2011 Apr;131(4):962-8. doi: 10.1038/jid.2010.429. Epub 2011 Jan 20.

Photodynamic therapy-induced immunosuppression in humans is prevented by reducing the rate of light delivery.

Author information

Department of Dermatology, Bosch Institute, The University of Sydney and Sydney Cancer Centre at Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia.


Photodynamic therapy (PDT) of non-melanoma skin cancers currently carries failure rates of 10-40%. The optimal irradiation protocol is as yet unclear. Previous studies showed profound immunosuppression after PDT, which may compromise immune-mediated clearance of these antigenic tumors. Slower irradiation prevents immunosuppression in mice, and may be at least as effective as high-fluence-rate PDT in preliminary clinical trials. The photosensitizers 5-aminolaevulinic acid and/or methyl aminolaevulinate were applied to discrete areas on the backs of healthy Mantoux-positive volunteers, followed by narrowband red light irradiation (632 nm) at varied doses and fluence rates. Delayed type hypersensitivity (Mantoux) reactions were elicited at test sites and control sites to determine immunosuppression. Human ex vivo skin received low- and high-fluence-rate PDT and was stained for oxidative DNA photolesions. PDT caused significant, dose-responsive immunosuppression at high (75 mW cm(-2)) but not low (15 or 45 mW cm(-2)) fluence rates. DNA photolesions, which may be a trigger for immunosuppression, were observed after high-fluence-rate PDT but not when light was delivered more slowly. This study demonstrates that the current clinical PDT protocol (75 mW cm(-2)) is highly immunosuppressive. Simply reducing the rate of irradiation, while maintaining the same light dose, prevented immunosuppression and genetic damage and may have the potential to improve skin cancer outcomes.

[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center