Send to

Choose Destination
J Neurosci. 2011 Jan 19;31(3):1114-27. doi: 10.1523/JNEUROSCI.5387-10.2011.

Mitochondrial reactive oxygen species are activated by mGluR5 through IP3 and activate ERK and PKA to increase excitability of amygdala neurons and pain behavior.

Author information

Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas 77555-1069, USA.


Reactive oxygen species (ROS) such as superoxide are emerging as important signaling molecules in physiological plasticity but also in peripheral and spinal cord pain pathology. Underlying mechanisms and pain-related ROS signaling in the brain remain to be determined. Neuroplasticity in the amygdala plays a key role in emotional-affective pain responses and depends on group I metabotropic glutamate receptors (mGluRs) and protein kinases. Using patch-clamp, live-cell imaging, and behavioral assays, we tested the hypothesis that mitochondrial ROS links group I mGluRs to protein kinase activation to increase neuronal excitability and pain behavior. Agonists for mGluR1/5 (DHPG) or mGluR5 (CHPG) increased neuronal excitability of neurons in the laterocapsular division of the central nucleus of the amygdala (CeLC). DHPG effects were inhibited by an mGluR5 antagonist (MTEP), IP(3) receptor blocker (xestospongin C), or ROS scavengers (PBN, tempol), but not by an mGluR1 antagonist (LY367385) or NO synthase inhibitor (l-NAME). Tempol inhibited the effects of IP(3) but not those of a PKC activator, indicating that ROS activation was IP(3) mediated. Live-cell imaging in CeLC-containing brain slices directly showed DHPG-induced and synaptically evoked mitochondrial superoxide production. DHPG also increased pain-related vocalizations and spinal reflexes through a mechanism that required mGluR5, IP(3), and ROS. Combined application of inhibitors of ERK (U0126) and PKA (KT5720) was necessary to block completely the excitatory effects of a ROS donor (tBOOH). A PKC inhibitor (GF109203X) had no effect. Antagonists and inhibitors alone did not affect neuronal excitability. The results suggest an important role for the novel mGluR5- IP(3)-ROS-ERK/PKA signaling pathway in amygdala pain mechanisms.

[Indexed for MEDLINE]
Free PMC Article

Publication type, MeSH terms, Substances, Grant support

Publication type

MeSH terms


Grant support

Supplemental Content

Full text links

Icon for HighWire Icon for PubMed Central
Loading ...
Support Center