Format

Send to

Choose Destination
J Am Chem Soc. 2011 Feb 16;133(6):1978-86. doi: 10.1021/ja109483a. Epub 2011 Jan 19.

Synergetic effect of surface and subsurface Ni species at Pt-Ni bimetallic catalysts for CO oxidation.

Author information

1
State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China.

Abstract

Various well-defined Ni-Pt(111) model catalysts are constructed at atomic-level precision under ultra-high-vacuum conditions and characterized by X-ray photoelectron spectroscopy and scanning tunneling microscopy. Subsequent studies of CO oxidation over the surfaces show that a sandwich surface (NiO(1-x)/Pt/Ni/Pt(111)) consisting of both surface Ni oxide nanoislands and subsurface Ni atoms at a Pt(111) surface presents the highest reactivity. A similar sandwich structure has been obtained in supported Pt-Ni nanoparticles via activation in H(2) at an intermediate temperature and established by techniques including acid leaching, inductively coupled plasma, and X-ray adsorption near-edge structure. Among the supported Pt-Ni catalysts studied, the sandwich bimetallic catalysts demonstrate the highest activity to CO oxidation, where 100% CO conversion occurs near room temperature. Both surface science studies of model catalysts and catalytic reaction experiments on supported catalysts illustrate the synergetic effect of the surface and subsurface Ni species on the CO oxidation, in which the surface Ni oxide nanoislands activate O(2), producing atomic O species, while the subsurface Ni atoms further enhance the elementary reaction of CO oxidation with O.

PMID:
21247156
DOI:
10.1021/ja109483a

Supplemental Content

Full text links

Icon for American Chemical Society
Loading ...
Support Center