Send to

Choose Destination
See comment in PubMed Commons below
J Exp Bot. 1996 Aug;47 Spec No:1265-71. doi: 10.1093/jxb/47.Special_Issue.1265.

Phloem mobility of xenobiotics VIII. A short review.

Author information

  • 1E.I. DuPont de Nemours and Company, Central Research and Development, Glasgow Business Community, Suite 301, PO Box 6101, Newark, DE 19714-6101, USA.


Great strides have been made in the last 15 years in our understanding of phloem mobility of xenobiotics. The subject has been transformed from a poorly understood phenomenon to a process that can be accurately described by the physicochemical properties of the xenobiotic and the nature of the vascular system through which it moves. The basic tenet of the unified mathematical model is that the combination of the permeability and the acid dissociation constant (pK(a)) determines phloem mobility, and this has been largely validated for many compounds in many plant systems. More precise testing of the model is, however, difficult due to the lack of requisite knowledge on the membrane composition of the sieve tube, permeation characteristics and sieve-cell biochemistry. Furthermore, attempts to relate quantitatively a compound's intrinsic mobility to its whole-plant mobility are often confounded by competing loss mechanisms. On the practical side, there is the challenge of coming up with efficacious phloem-mobile pesticides. Considerations are forwarded to explain why so far there are numerous phloem-mobile herbicides and yet precious few such insecticides and fungicides, and why the situation might be difficult to change. The knowledge of phloem mobility is robust enough to allow specific structural prescriptions to impart such mobility to existing pesticides. However, such structural changes often lead to a reduction of pesticidal activity. Recently, it has been demonstrated that this problem can be circumvented by combining oxamyl glucuronide (a phloem-mobile pro-nematicide) with a transgenic tobacco plant harboring a root-specific β-glucuronidase gene to release oxamyl for root-knot nematode control. This propesticide and in situ activation strategy is one way to use the existing body of knowledge for practical purposes. The same principle should be generally applicable to other plant-xenobiotic technologies.

Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center