Format

Send to

Choose Destination
See comment in PubMed Commons below
Health (Irvine Calif). 2010;2(1):8-15.

THE ROLE OF INTRACELLULAR SODIUM (Na) IN THE REGULATION OF CALCIUM (Ca)-MEDIATED SIGNALING AND TOXICITY.

Author information

1
Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida, 32306-4300, USA.

Abstract

It is known that activated N-methyl-D-aspartate receptors (NMDARs) are a major route of excessive calcium ion (Ca(2+)) entry in central neurons, which may activate degradative processes and thereby cause cell death. Therefore, NMDARs are now recognized to play a key role in the development of many diseases associated with injuries to the central nervous system (CNS). However, it remains a mystery how NMDAR activity is recruited in the cellular processes leading to excitotoxicity and how NMDAR activity can be controlled at a physiological level. The sodium ion (Na(+)) is the major cation in extracellular space. With its entry into the cell, Na(+) can act as a critical intracellular second messenger that regulates many cellular functions. Recent data have shown that intracellular Na(+) can be an important signaling factor underlying the up-regulation of NMDARs. While Ca(2+) influx during the activation of NMDARs down-regulates NMDAR activity, Na(+) influx provides an essential positive feedback mechanism to overcome Ca(2+)-induced inhibition and thereby potentiate both NMDAR activity and inward Ca(2+) flow. Extensive investigations have been conducted to clarify mechanisms underlying Ca(2+)-mediated signaling. This review focuses on the roles of Na(+) in the regulation of Ca(2+)-mediated NMDAR signaling and toxicity.

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for PubMed Central
    Loading ...
    Support Center