Format

Send to

Choose Destination
See comment in PubMed Commons below
J Insect Physiol. 2011 Apr;57(4):444-51. doi: 10.1016/j.jinsphys.2011.01.005. Epub 2011 Jan 15.

Responses of Drosophila melanogaster to atypical oxygen atmospheres.

Author information

1
Department of Biological Sciences, Brock University, St. Catharines, Ontario L2S 3A1, Canada.

Abstract

We examined physiological phenotypes of Drosophila melanogaster in hypoxic to hyperoxic atmospheres. We performed measurements on life span or behavioural function in 5, 21, 40, 60, and 80% O(2), and combined this with literature data for 2% and 100% O(2). O(2) incubation resulted in a concentration-dependent reduction of life span in both hypoxia and hyperoxia, though different measures of life span were affected differently. We also examined how behavioural and metabolic functions were affected by exposure to hyperoxia (up to 60% O(2)). Climbing behaviour was measured as a fast (4 s) and slow (55 s) response in a negative geotaxis assay. In normoxia, both measures of climbing response declined exponentially until disappearing completely. Interestingly, survivorship was very high until the loss of climbing ability, after which it dropped rapidly. This pattern appeared accelerated in 40% O(2). However, while flies in 60% O(2) also apparently lost their fast climbing ability immediately prior to the drop in survivorship, they maintained considerable climbing ability over the longer trial. Metabolism, measured by CO(2) release, did not change with age in normoxic flies, but was significantly lower in flies exposed to hyperoxia, particularly as the flies aged. There was, however, a slight increase in water loss rate with age in normoxia, while in hyperoxia, water loss was reduced. Uniquely, the water loss rates of flies in 60% O(2) doubled immediately prior to the end of their life span. Because ageing results in generally irreversible functional declines, we examined if functional declines in hyperoxia (60% O(2)) were also irreversible, or whether some functioning could recover after a return to normoxia. After 7 days of recovery, water loss rates decreased, CO(2) exhalation slightly increased, and climbing ability was partially recovered. Therefore, the effect of O(2) on D. melanogaster function is non-linear, may be reversible, and may include unique phenotypes that arise at some O(2) concentrations, and not others.

PMID:
21241703
DOI:
10.1016/j.jinsphys.2011.01.005
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center