Send to

Choose Destination
See comment in PubMed Commons below
Brain Res Rev. 2011 Jun 24;67(1-2):147-56. doi: 10.1016/j.brainresrev.2011.01.001. Epub 2011 Jan 12.

Oligodendrogenesis in the subventricular zone and the role of epidermal growth factor.

Author information

  • 1Laboratory of Neuroscience, School of Psychology, University of Colima, Colima, Colima 28040, Mexico.


Demyelinating diseases are characterized by an extensive loss of oligodendrocytes and myelin sheaths from axolemma. These neurological disorders are a common cause of disability in young adults, but so far, there is no effective treatment against them. It has been suggested that neural stem cells (NSCs) may play an important role in brain repair therapies. NSCs in the adult subventricular zone (SVZ), also known as Type-B cells, are multipotential cells that can self-renew and give rise to neurons and glia. Recent findings have shown that cells derived from SVZ Type-B cells actively respond to epidermal-growth-factor (EGF) stimulation becoming highly migratory and proliferative. Interestingly, a subpopulation of these EGF-activated cells expresses markers of oligodendrocyte precursor cells (OPCs). When EGF administration is removed, SVZ-derived OPCs differentiate into myelinating and pre-myelinating oligodendrocytes in the white matter tracts of corpus callosum, fimbria fornix and striatum. In the presence of a demyelinating lesion, OPCs derived from EGF-stimulated SVZ progenitors contribute to myelin repair. Given their high migratory potential and their ability to differentiate into myelin-forming cells, SVZ NSCs represent an important endogenous source of OPCs for preserving the oligodendrocyte population in the white matter and for the repair of demyelinating injuries.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Support Center