Format

Send to

Choose Destination
See comment in PubMed Commons below
J Mol Model. 2011 Oct;17(10):2569-74. doi: 10.1007/s00894-010-0953-8. Epub 2011 Jan 13.

Sensitivity and the available free space per molecule in the unit cell.

Author information

1
Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, 12116 Prague 2, Czech Republic.

Abstract

Invoking the known link between impact sensitivity and compressibility, we have expanded upon an earlier preliminary study of the significance of the available free space per molecule in the unit cell, ΔV. We express ΔV as V(eff) - V(int), where V(eff) corresponds to zero free space, V(eff) = molecular mass/density. V(int) is the intrinsic gas phase molecular volume. We demonstrate that V(int) can be appropriately defined as the volume enclosed by the 0.003 au contour of the molecule's electronic density; this produces packing coefficients that have the range and average value found crystallographically. Measured impact sensitivities show an overall tendency to increase as ΔV becomes larger. For nitramines, the dependence upon ΔV is rather weak; we interpret this as indicating that a single overriding factor dominates their initiation mechanism, e.g., N-NO(2) rupture. (An analogous situation appears to hold for many organic azides.) In addition to the conceptual significance of identifying ΔV as a factor in impact sensitivity, the present results allow rough estimates of relative sensitivities that are not known.

PMID:
21229368
DOI:
10.1007/s00894-010-0953-8
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Springer
    Loading ...
    Support Center