Format

Send to

Choose Destination
See comment in PubMed Commons below
Nature. 2011 Jan 27;469(7331):512-5. doi: 10.1038/nature09719. Epub 2011 Jan 12.

Broadband waveguide quantum memory for entangled photons.

Author information

1
Institute for Quantum Information Science, and Department of Physics and Astronomy, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada.

Abstract

The reversible transfer of quantum states of light into and out of matter constitutes an important building block for future applications of quantum communication: it will allow the synchronization of quantum information, and the construction of quantum repeaters and quantum networks. Much effort has been devoted to the development of such quantum memories, the key property of which is the preservation of entanglement during storage. Here we report the reversible transfer of photon-photon entanglement into entanglement between a photon and a collective atomic excitation in a solid-state device. Towards this end, we employ a thulium-doped lithium niobate waveguide in conjunction with a photon-echo quantum memory protocol, and increase the spectral acceptance from the current maximum of 100 megahertz to 5 gigahertz. We assess the entanglement-preserving nature of our storage device through Bell inequality violations and by comparing the amount of entanglement contained in the detected photon pairs before and after the reversible transfer. These measurements show, within statistical error, a perfect mapping process. Our broadband quantum memory complements the family of robust, integrated lithium niobate devices. It simplifies frequency-matching of light with matter interfaces in advanced applications of quantum communication, bringing fully quantum-enabled networks a step closer.

PMID:
21228775
DOI:
10.1038/nature09719
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Nature Publishing Group
    Loading ...
    Support Center