Format

Send to

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2011 Apr 8;286(14):12627-39. doi: 10.1074/jbc.M110.175257. Epub 2011 Jan 11.

Functional roles of a C-terminal signaling complex of CaV1 channels and A-kinase anchoring protein 15 in brain neurons.

Author information

1
Department of Pharmacology, School of Medicine, University of Washington, Seattle, Washington 98195-7280, USA.

Abstract

Regulation of CaV1.2 channels in cardiac myocytes by the β-adrenergic pathway requires a signaling complex in which the proteolytically processed distal C-terminal domain acts as an autoinhibitor of channel activity and mediates up-regulation by the β-adrenergic receptor and PKA bound to A-kinase anchoring protein 15 (AKAP15). We examined the significance of this distal C-terminal signaling complex for CaV1.2 and CaV1.3 channels in neurons. AKAP15 co-immunoprecipitates with CaV1.2 and CaV1.3 channels. AKAP15 has overlapping localization with CaV1.2 and CaV1.3 channels in cell bodies and proximal dendrites and is closely co-localized with CaV1.2 channels in punctate clusters. The neuronal AKAP MAP2B, which also interacts with CaV1.2 and CaV1.3 channels, has complementary localization to AKAP15, suggesting different functional roles in calcium channel regulation. Studies with mice that lack the distal C-terminal domain of CaV1.2 channels (CaV1.2ΔDCT) reveal that AKAP15 interacts with neuronal CaV1.2 channels via their C terminus in vivo and is co-localized in punctate clusters of CaV1.2 channels via that interaction. CaV1.2ΔDCT neurons have reduced L-type calcium current, indicating that the distal C-terminal domain is required for normal functional expression in vivo. Deletion of the distal C-terminal domain impairs calcium-dependent signaling from CaV1.2 channels to the nucleus, as shown by reduction in phosphorylation of the cAMP response element-binding protein. Our results define AKAP signaling complexes of CaV1.2 and CaV1.3 channels in brain and reveal three previously unrecognized functional roles for the distal C terminus of neuronal CaV1.2 channels in vivo: increased functional expression, anchoring of AKAP15 and PKA, and initiation of excitation-transcription coupling.

PMID:
21224388
PMCID:
PMC3069463
DOI:
10.1074/jbc.M110.175257
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center