Format

Send to

Choose Destination
See comment in PubMed Commons below
Environ Health Perspect. 2011 Jun;119(6):801-6. doi: 10.1289/ehp.1002873. Epub 2011 Jan 11.

Biomarkers of chlorpyrifos exposure and effect in Egyptian cotton field workers.

Author information

1
Department of Community Medicine and Public Health, Faculty of Medicine, Menoufia University, Shebin El-Kom, Egypt.

Abstract

BACKGROUND:

Chlorpyrifos (CPF), a widely used organophosphorus pesticide (OP), is metabolized to CPF-oxon, a potent cholinesterase (ChE) inhibitor, and trichloro-2-pyridinol (TCPy). Urinary TCPy is often used as a biomarker for CPF exposure, whereas blood ChE activity is considered an indicator of CPF toxicity. However, whether these biomarkers are dose related has not been studied extensively in populations with repeated daily OP exposures.

OBJECTIVE:

We sought to determine the relationship between blood ChE and urinary TCPy during repeated occupational exposures to CPF.

METHODS:

Daily urine samples and weekly blood samples were collected from pesticide workers (n=38) in Menoufia Governorate, Egypt, before, during, and after 9-17 consecutive days of CPF application to cotton fields. We compared blood butyrylcholinesterase (BuChE) and acetylcholinesterase (AChE) activities with the respective urinary TCPy concentrations in each worker.

RESULTS:

Average TCPy levels during the middle of a 1- to 2-week CPF application period were significantly higher in pesticide applicators (6,437 µg/g creatinine) than in technicians (184 µg/g) and engineers (157 µg/g), both of whom are involved in supervising the application process. We observed a statistically significant inverse correlation between urinary TCPy and blood BuChE and AChE activities. The no-effect level (or inflection point) of the exposure-effect relationships has an average urinary TCPy level of 114 µg/g creatinine for BuChE and 3,161 µg/g creatinine for AChE.

CONCLUSIONS:

Our findings demonstrate a dose-effect relationship between urinary TCPy and both plasma BuChE and red blood cell AChE in humans exposed occupationally to CPF. These findings will contribute to future risk assessment efforts for CPF exposure.

PMID:
21224175
PMCID:
PMC3114814
DOI:
10.1289/ehp.1002873
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for National Institute of Environmental Health Sciences Icon for PubMed Central
    Loading ...
    Support Center