Format

Send to

Choose Destination
See comment in PubMed Commons below
Neuroimage. 2011 Apr 15;55(4):1645-56. doi: 10.1016/j.neuroimage.2010.11.088. Epub 2011 Jan 9.

Quantitative susceptibility mapping of human brain reflects spatial variation in tissue composition.

Author information

1
Brain Imaging and Analysis Center, School of Medicine, Duke University, Durham, NC 27705, USA.

Abstract

Image phase from gradient echo MRI provides a unique contrast that reflects brain tissue composition variations, such as iron and myelin distribution. Phase imaging is emerging as a powerful tool for the investigation of functional brain anatomy and disease diagnosis. However, the quantitative value of phase is compromised by its nonlocal and orientation dependent properties. There is an increasing need for reliable quantification of magnetic susceptibility, the intrinsic property of tissue. In this study, we developed a novel and accurate susceptibility mapping method that is also phase-wrap insensitive. The proposed susceptibility mapping method utilized two complementary equations: (1) the Fourier relationship of phase and magnetic susceptibility; and (2) the first-order partial derivative of the first equation in the spatial frequency domain. In numerical simulation, this method reconstructed the susceptibility map almost free of streaking artifact. Further, the iterative implementation of this method allowed for high quality reconstruction of susceptibility maps of human brain in vivo. The reconstructed susceptibility map provided excellent contrast of iron-rich deep nuclei and white matter bundles from surrounding tissues. Further, it also revealed anisotropic magnetic susceptibility in brain white matter. Hence, the proposed susceptibility mapping method may provide a powerful tool for the study of brain physiology and pathophysiology. Further elucidation of anisotropic magnetic susceptibility in vivo may allow us to gain more insight into the white matter micro-architectures.

PMID:
21224002
PMCID:
PMC3062654
DOI:
10.1016/j.neuroimage.2010.11.088
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments

    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Support Center