Send to

Choose Destination
Immunol Cell Biol. 2011 Feb;89(2):207-15. doi: 10.1038/icb.2010.158. Epub 2011 Jan 11.

CXCR3 ligands: redundant, collaborative and antagonistic functions.

Author information

Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA.


CXCR3 is a chemokine receptor that is rapidly induced on naïve T cells following activation, and preferentially remains highly expressed on type-1 helper (Th1)-type CD4(+) T cells, effector CD8(+) T cells and innate-type lymphocytes, such as natural killer (NK) and NKT cells. CXCR3 is activated by three interferon (IFN)-γ-inducible ligands CXCL9 (monokine induced by gamma-interferon), CXCL10 (interferon-induced protein-10) and CXCL11 (interferon-inducible T-cell alpha chemoattractant). Although some studies have revealed that these ligands have redundant functions in vivo, other studies have demonstrated that the three CXCR3 ligands can also collaborate and even compete with each other. Differential regulation of the three ligands at specific times in defined anatomically restricted locations in vivo likely participates in the fine control of T-cell trafficking over the course of an immune response. Among the differences in regulation, CXCL10 is induced by a variety of innate stimuli that induce IFN-α/β as well as the adaptive immune cell cytokine IFN-γ, whereas CXCL9 induction is restricted to IFN-γ. In this review, we will discuss how the balance, timing and pattern of CXCR3 ligand expression appears to regulate the generation of effector T cells in the lymphoid compartment and subsequent migration into peripheral sites of Th1-type inflammation in which the CXCR3 ligands also then regulate the interactions and migratory behavior of effector T cells in an inflamed peripheral tissue.

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Wiley Icon for PubMed Central
Loading ...
Support Center