Developments in laboratory studies of gas-phase reactions for atmospheric chemistry with applications to isoprene oxidation and carbonyl chemistry

Annu Rev Phys Chem. 2011:62:351-73. doi: 10.1146/annurev-physchem-032210-102538.

Abstract

Laboratory studies of gas-phase chemical processes are a key tool in understanding the chemistry of our atmosphere and hence tackling issues such as climate change and air quality. Laboratory techniques have improved considerably with greater emphasis on product detection, allowing the measurement of site-specific rate coefficients. Radical chemistry lies at the heart of atmospheric chemistry. In this review we consider issues around radical generation and recycling from the oxidation of isoprene and from the chemical reactions and photolysis of carbonyl species. Isoprene is the most globally significant hydrocarbon, but uncertainties exist about its oxidation in unpolluted environments. Recent experiments and calculations that cast light on radical generation are reviewed. Carbonyl compounds are the dominant first-generation products from hydrocarbon oxidation. Chemical oxidation can recycle radicals, or photolysis can be a net radical source. Studies have demonstrated that high-resolution and temperature-dependent studies are important for some significant species.