Format

Send to

Choose Destination
Virology. 2011 Mar 15;411(2):206-15. doi: 10.1016/j.virol.2010.12.016. Epub 2011 Jan 8.

Contributions of humoral and cellular immunity to vaccine-induced protection in humans.

Author information

1
Najít Technologies, Inc., Beaverton, OR 97006, USA. iamanna@najittech.com

Abstract

Vaccines play a vital role in protecting the host against infectious disease. The most effective licensed vaccines elicit long-term antigen-specific antibody responses by plasma cells in addition to the development of persisting T cell and B cell memory. The relative contributions of these different immune cell subsets are context-dependent and vary depending on the attributes of the vaccine (i.e., live/attenuated, inactivated, and subunit) as well as the biology of the pathogen in question. For relatively simple vaccines against bacterial antigens (e.g., tetanus toxin) or invariant viruses, the immunological correlates of protection are well-characterized. For more complex vaccines against viruses, especially those that mutate or cause latent infections, it is more difficult to define the specific correlates of immunity. This often requires observational/natural history studies, clinical trials, or experimental evaluation in relevant animal models in order for immunological correlates to be determined or extrapolated. In this review, we will discuss the relative contributions of virus-specific T cell and B cell responses to vaccine-mediated protection against disease.

PMID:
21216425
PMCID:
PMC3238379
DOI:
10.1016/j.virol.2010.12.016
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Elsevier Science Icon for PubMed Central
Loading ...
Support Center