Send to

Choose Destination
See comment in PubMed Commons below
Proc Natl Acad Sci U S A. 2011 Jan 25;108(4):1409-14. doi: 10.1073/pnas.1006937108. Epub 2011 Jan 6.

Suppression of leukemia development caused by PTEN loss.

Author information

  • 1Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095, USA.


Multiple genetic or molecular alterations are known to be associated with cancer stem cell formation and cancer development. Targeting such alterations, therefore, may lead to cancer prevention. By crossing our previously established phosphatase and tensin homolog (Pten)-null acute T-lymphoblastic leukemia (T-ALL) model onto the recombination-activating gene 1(-/-) background, we show that the lack of variable, diversity and joining [V(D)J] recombination completely abolishes the Tcrα/δ-c-myc translocation and T-ALL development, regardless of β-catenin activation. We identify mammalian target of rapamycin (mTOR) as a regulator of β-selection. Rapamycin, an mTOR-specific inhibitor, alters nutrient sensing and blocks T-cell differentiation from CD4(-)CD8(-) to CD4(+)CD8(+), the stage where the Tcrα/δ-c-myc translocation occurs. Long-term rapamycin treatment of preleukemic Pten-null mice prevents Tcrα/δ-c-myc translocation and leukemia stem cell (LSC) formation, and it halts T-ALL development. However, rapamycin alone fails to inhibit mTOR signaling in the c-Kit(mid)CD3(+)Lin(-) population enriched for LSCs and eliminate these cells. Our results support the idea that preventing LSC formation and selectively targeting LSCs are promising approaches for antileukemia therapies.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center