Effect of Patch Mechanical Properties on Right Ventricle Function Using MRI-Based Two-Layer Anisotropic Models of Human Right and Left Ventricles

Comput Model Eng Sci. 2010;56(2):113-130.

Abstract

Right and left ventricle (RV/LV) combination models with three different patch materials (Dacron scaffold, treated pericardium, and contracting myocardium), two-layer construction, fiber orientation, and active anisotropic material properties were introduced to evaluate the effects of patch materials on RV function. A material-stiffening approach was used to model active heart contraction. Cardiac magnetic resonance (CMR) imaging was performed to acquire patient-specific ventricular geometries and cardiac motion from a patient with severe RV dilatation due to pulmonary regurgitation needing RV remodeling and pulmonary valve replacement operation. Computational models were constructed and solved to obtain RV stroke volume, ejection fraction, patch area variations, and stress/strain data for patch comparisons. Our results indicate that the patch model with contracting myocardium leads to decreased stress level in the patch area, improved RV function and patch area contractility. Maximum Stress-P(1) (maximum principal stress) value at the center of the patch from the Dacron scaffold patch model was 350% higher than that from the other two models. Patch area reduction ratio was 0.3%, 3.1% and 27.4% for Dacron scaffold, pericardium, and contracting myocardium patches, respectively. These findings suggest that the contracting myocardium patch model may lead to improved recovery of RV function in patients with severe chronic pulmonary regurgitation.