Format

Send to

Choose Destination
See comment in PubMed Commons below
Endocrinology. 2011 Feb;152(2):405-13. doi: 10.1210/en.2010-0956. Epub 2011 Jan 5.

Glutamine triggers and potentiates glucagon-like peptide-1 secretion by raising cytosolic Ca2+ and cAMP.

Author information

1
Cambridge Institute for Medical Research, Addenbrooke’s Hospital, Cambridge CB2 0XY, United Kingdom.

Abstract

L-glutamine stimulates glucagon-like peptide 1 (GLP-1) secretion in human subjects and cell lines. As recent advances have enabled the study of primary GLP-1-releasing L cells, this study aimed to characterize glutamine-sensing pathways in native murine L cells. L cells were identified using transgenic mice with cell-specific expression of fluorescent markers. Cells were studied in primary colonic cultures from adult mice, or purified by flow cytometry for expression analysis. Intracellular Ca(2+) was monitored in cultures loaded with Fura2, and cAMP was studied using Förster resonance energy transfer sensors expressed in GLUTag cells. Asparagine, phenylalanine, and glutamine (10 mm) triggered GLP-1 release from primary cultures, but glutamine was the most efficacious, increasing secretion 1.9-fold with an EC(50) of 0.19 mm. Several amino acids triggered Ca(2+) changes in L cells, comparable in magnitude to that induced by glutamine. Glutamine-induced Ca(2+) responses were abolished in low Na(+) solution and attenuated in Ca(2+) free solution, suggesting a role for Na(+) dependent uptake and Ca(2+) influx. The greater effectiveness of glutamine as a secretagogue was paralleled by its ability to increase cAMP in GLUTag cells. Glutamine elevated intracellular cAMP to 36% of that produced by a maximal stimulus, whereas asparagine only increased intracellular cAMP by 24% and phenylalanine was without effect. Glutamine elevates both cytosolic Ca(2+) and cAMP in L cells, which may account for the effectiveness of glutamine as a GLP-1 secretagogue. Therapeutic agents like glutamine that target synergistic pathways in L cells might play a future role in the treatment of type 2 diabetes.

PMID:
21209017
PMCID:
PMC3140224
DOI:
10.1210/en.2010-0956
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Silverchair Information Systems Icon for PubMed Central
    Loading ...
    Support Center