For training, each rat was placed in the test chamber for 2 min, and subsequently received a pair of tone (20 s, horizontal bar) and foot shock (0.3 mA, arrow) (A). The mean percentage of time spent freezing was plotted in WT (blue, n = 22) and rSey2/+ rats (magenta, n = 28). Forty-eight h (B) and 96 h (C) after the training, freezing responses to the tone were measured for 5 min (horizontal bars) in a context-independent way. Freezing response was not different between WT (n = 22) and rSey2/+ rats (n = 28) during the initial training (A). In contrast, performance of tone-fear conditioned memory was lower after 48 h (genotype: F(1) = 9.20, P<0.01; time: F(2.35) = 5.92, P<0.005; genotype × time: F(2.35) = 0.25, not significant; B) and 96 h (genotype: F(1) = 11.40, P<0.005; time: F(2.62) = 7.96, P<0.001; genotype × time: F(2.62) = 0.99, not significant; C) in rSey2/+ rats. Auditory ability (D) and sensitivity to electric foot shock (E) in rSey2/+ rats were comparable to that in WT. Data are expressed by mean ± SEM. n.s., not significant **P<0.01, ***P<0.001, compared to WT as determined by Bonferroni post hoc test.