Send to

Choose Destination
Environ Microbiol. 2011 Jan;13(1):135-144. doi: 10.1111/j.1462-2920.2010.02315.x.

Global patterns in the biogeography of bacterial taxa.

Author information

Institute of Arctic and Alpine Research,Environmental Studies Program,Department of Chemistry and BiochemistryDepartment of Computer ScienceDepartment of Ecology and Evolutionary BiologyCooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO 80309, USA.Center for Genome Sciences, Washington University School of Medicine, St. Louis, MO 63108, USA.School of Biology, Georgia Institute of Technology, Atlanta, GA 30332, USA.Department of Ecosystem and Conservation Sciences, University of Montana, Missoula, MT 59812.


Bacteria control major nutrient cycles and directly influence plant, animal and human health. However, we know relatively little about the forces shaping their large-scale ecological ranges. Here, we reveal patterns in the distribution of individual bacterial taxa at multiple levels of phylogenetic resolution within and between Earth's major habitat types. Our analyses suggest that while macro-scale habitats structure bacterial distribution to some degree, abundant bacteria (i.e. detectable using 16S rRNA gene sequencing methods) are confined to single assemblages. Additionally, we show that the most cosmopolitan taxa are also the most abundant in individual assemblages. These results add to the growing body of data that support that the diversity of the overall bacterial metagenome is tremendous. The mechanisms governing microbial distribution remain poorly understood, but our analyses provide a framework with which to test the importance of macro-ecological environmental gradients, relative abundance, neutral processes and the ecological strategies of individual taxa in structuring microbial communities.

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Wiley Icon for PubMed Central
Loading ...
Support Center