Send to

Choose Destination
See comment in PubMed Commons below
Front Biosci (Landmark Ed). 2011 Jan 1;16:21-30.

Regulatory mechanism of osteoclastogenesis by RANKL and Wnt signals.

Author information

Institute for Oral Science, Matsumoto Dental University, 1780 Gobara, Hiro-oka, Shiojiri, Nagano 399-0781, Japan.


Osteoclasts develop from monocyte-macrophage lineage cells under the regulation of osteoblasts. Osteoblasts express two cytokines essential for osteoclastogenesis, macrophage colony-stimulating factor (M-CSF) and receptor activator of nuclear factor-KappaB ligand (RANKL). Osteoblasts also produce osteoprotegerin (OPG), a decoy receptor for RANKL, which inhibits the interaction between RANKL and RANK, a receptor of RANKL. Bone resorption-stimulating factors act on osteoblasts to regulate RANKL and OPG expression. Nuclear factor of activated T-cells, cytoplasmic 1 (NFATc1) is a master transcription factor for osteoclast differentiation. The immunoreceptor tyrosine-based activation motif (ITAM)-mediated signal was discovered as a co-stimulatory signal in RANKL-induced osteoclastogenesis. Wnt proteins activate two pathways: beta-catenin-dependent canonical and beta-catenin-independent noncanonical pathways. Wnt proteins promote differentiation of osteoblasts through the canonical pathway. The canonical pathway in osteoblasts also suppresses osteoclastogenesis through up-regulation of OPG expression and down-regulation of RANKL expression. In contrast, activation of the noncanonical pathway in osteoclast precursors enhances RANKL-induced osteoclastic differentiation. Thus, Wnt signals in osteoblasts and osteoclast precursors play important roles in osteoclastogenesis. This review summarizes the regulatory mechanism of osteoclastogenesis by RANKL and Wnt signals.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Frontiers in Bioscience
    Loading ...
    Support Center