Send to

Choose Destination
Appl Environ Microbiol. 1990 Aug;56(8):2551-8.

Some chemical and physical properties of nisin, a small-protein antibiotic produced by Lactococcus lactis.

Author information

Department of Chemistry and Biochemistry, University of Maryland, College Park 20742.


Nisin is a small gene-encoded antimicrobial protein produced by Lactococcus lactis that contains unusual dehydroalanine and dehydrobutyrine residues. The reactivity of these residues toward nucleophiles was explored by reacting nisin with a variety of mercaptans. The kinetics of reaction with 2-mercaptoethane-sulfonate and thioglycolate indicated that the reaction pathway includes a binding step. Reaction of nisin at high pH resulted in the formation of multimeric products, apparently as a result of intramolecular and intermolecular reactions between nucleophilic groups and the dehydro residues. One of the nucleophiles had a pKa of about 9.8. The unique vinyl protons of the dehydro residues that give readily identifiable proton nuclear magnetic resonances were used to observe the addition of nucleophiles to the dehydro moiety. After reaction with nucleophiles, nisin lost its antibiotic activity and no longer showed the dehydro resonances, indicating that the dehydro groups had been modified. The effect of pH on the solubility of nisin was determined; the solubility was quite high at low pH (57 mg/ml at pH 2) and was much lower at high pH (0.25 mg/ml at pH 8 to 12), as measured before significant pH-induced chemical modification had occurred. High-performance liquid chromatography on a C18 column was an effective technique for separating unmodified nisin from its reaction products. The cyanogen bromide cleavage products of nisin were about 90% less active toward inhibition of bacterial spore outgrowth than was native nisin. These results are consistent with earlier observations, which suggested that the dehydro residues of nisin have a role in the mechanism of antibiotic action, in which they act as electrophilic Michael acceptors toward nucleophiles in the cellular target.

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for HighWire Icon for PubMed Central
Loading ...
Support Center