Format

Send to

Choose Destination
See comment in PubMed Commons below
J Immunol. 2011 Feb 1;186(3):1333-7. doi: 10.4049/jimmunol.1003111. Epub 2010 Dec 29.

Cutting edge: NLRC5-dependent activation of the inflammasome.

Author information

1
Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.

Abstract

The nucleotide-binding domain leucine-rich repeat-containing proteins, NLRs, are intracellular sensors of pathogen-associated molecular patterns and damage-associated molecular patterns. A subgroup of NLRs can form inflammasome complexes, which facilitate the maturation of procaspase 1 to caspase 1, leading to IL-1β and IL-18 cleavage and secretion. NLRC5 is predominantly expressed in hematopoietic cells and has not been studied for inflammasome function. RNA interference-mediated knockdown of NLRC5 nearly eliminated caspase 1, IL-1β, and IL-18 processing in response to bacterial infection, pathogen-associated molecular patterns, and damage-associated molecular patterns. This was confirmed in primary human monocytic cells. NLRC5, together with procaspase 1, pro-IL-1β, and the inflammasome adaptor ASC, reconstituted inflammasome activity that showed cooperativity with NLRP3. The range of pathogens that activate NLRC5 inflammasome overlaps with those that activate NLRP3. Furthermore, NLRC5 biochemically associates with NLRP3 in a nucleotide-binding domain-dependent but leucine-rich repeat-inhibitory fashion. These results invoke a model in which NLRC5 interacts with NLRP3 to cooperatively activate the inflammasome.

PMID:
21191067
PMCID:
PMC3669680
DOI:
10.4049/jimmunol.1003111
[Indexed for MEDLINE]
Free PMC Article

Publication types, MeSH terms, Substances, Grant support

Publication types

MeSH terms

Substances

Grant support

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center