Send to

Choose Destination
See comment in PubMed Commons below
Mol Cell Biol. 2011 Mar;31(5):971-82. doi: 10.1128/MCB.01034-10. Epub 2010 Dec 28.

HEB-deficient T-cell precursors lose T-cell potential and adopt an alternative pathway of differentiation.

Author information

  • 1Sunnybrook Research Institute and Department of Immunology, University of Toronto, 2075 Bayview Ave., Toronto, Ontario, Canada.


Early thymocytes possess multilineage potential, which is progressively restricted as cells transit through the double-negative stages of T-cell development. DN1 cells retain the ability to become natural killer cells, dendritic cells, B cells, and myeloid cells as well as T cells, but these options are lost by the DN3 stage. The Notch1 signaling pathway is indispensable for initiation of the T-cell lineage and inhibitory for the B-cell lineage, but the regulatory mechanisms by which the T-cell fate is locked in are largely undefined. Previously, we discovered that the E-protein transcription factor HEBAlt promoted T-cell specification. Here, we report that HEB(-/-) T-cell precursors have compromised Notch1 function and lose T-cell potential. Moreover, reconstituting HEB(-/-) precursors with Notch1 activity enforced fidelity to the T-cell fate. However, instead of becoming B cells, HEB(-/-) DN3 cells adopted a DN1-like phenotype and could be induced to differentiate into thymic NK cells. HEB(-/-) DN1-like cells retained GATA3 and Id2 expression but had lower levels of the Bcl11b gene, a Notch target gene. Therefore, our studies have revealed a new set of interactions between HEB, Notch1, and GATA3 that regulate the T-cell fate choice in developing thymocytes.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center