Format

Send to

Choose Destination
See comment in PubMed Commons below
Cell Res. 2011 Jun;21(6):957-69. doi: 10.1038/cr.2010.181. Epub 2010 Dec 28.

The endoplasmic reticulum-associated degradation is necessary for plant salt tolerance.

Author information

  • 1State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.

Abstract

Eukaryotic organisms have quality-control mechanisms that allow misfolded or unassembled proteins to be retained in the endoplasmic reticulum (ER) and subsequently degraded by ER-associated degradation (ERAD). The ERAD pathway is well studied in yeast and mammals; however, the biological functions of plant ERAD have not been reported. Through molecular and cellular biological approaches, we found that ERAD is necessary for plants to overcome salt stress. Upon salt treatment ubiquitinated proteins increased in plant cells, especially unfolded proteins that quickly accumulated in the ER and subsequently induced ER stress responses. Defect in HRD3A of the HRD1/HRD3 complex of the ERAD pathway resulted in alteration of the unfolded protein response (UPR), increased plant sensitivity to salt, and retention of ERAD substrates in plant cells. Furthermore, we demonstrated that Ca(2+) release from the ER is involved in the elevation of UPR and reactive oxygen species (ROS) participates the ERAD-related plant salt response pathway.

PMID:
21187857
PMCID:
PMC3203697
DOI:
10.1038/cr.2010.181
[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Nature Publishing Group Icon for PubMed Central
    Loading ...
    Support Center