Send to

Choose Destination
See comment in PubMed Commons below
EMBO J. 2011 Mar 2;30(5):873-81. doi: 10.1038/emboj.2010.343. Epub 2010 Dec 24.

The highly conserved KEOPS/EKC complex is essential for a universal tRNA modification, t6A.

Author information

  • 1Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, USA.


The highly conserved Kinase, Endopeptidase and Other Proteins of small Size (KEOPS)/Endopeptidase-like and Kinase associated to transcribed Chromatin (EKC) protein complex has been implicated in transcription, telomere maintenance and chromosome segregation, but its exact function remains unknown. The complex consists of five proteins, Kinase-Associated Endopeptidase (Kae1), a highly conserved protein present in bacteria, archaea and eukaryotes, a kinase (Bud32) and three additional small polypeptides. We showed that the complex is required for a universal tRNA modification, threonyl carbamoyl adenosine (t6A), found in all tRNAs that pair with ANN codons in mRNA. We also showed that the bacterial ortholog of Kae1, YgjD, is required for t6A modification of Escherichia coli tRNAs. The ATPase activity of Kae1 and the kinase activity of Bud32 are required for the modification. The yeast protein Sua5 has been reported previously to be required for t6A synthesis. Using yeast extracts, we established an in vitro system for the synthesis of t6A that requires Sua5, Kae1, threonine, bicarbonate and ATP. It remains to be determined whether all reported defects of KEOPS/EKC mutants can be attributed to the lack of t6A, or whether the complex has multiple functions.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center