Send to

Choose Destination
See comment in PubMed Commons below
Clin Cancer Res. 2011 Mar 15;17(6):1362-72. doi: 10.1158/1078-0432.CCR-10-2213. Epub 2010 Dec 21.

Chondroitinase ABC I-mediated enhancement of oncolytic virus spread and antitumor efficacy.

Author information

  • 1Dardinger Laboratory for Neuro-oncology and Neurosciences, Department of Neurological Surgery, Center for Biostatistics, The Ohio State University Medical Center, Columbus, Ohio, USA.



The inhibitory role of secreted chondroitin sulfate proteoglycans on oncolytic viral (OV) therapy was examined. Chondroitinase ABC (Chase-ABC) is a bacterial enzyme that can remove chondroitin sulfate glycosaminoglycans from proteoglycans without any deleterious effects in vivo. We examined the effect of Chase-ABC on OV spread and efficacy.


Three-dimensional glioma spheroids placed on cultured brain slices were utilized to evaluate OV spread. Replication-conditional OV-expressing Chase-ABC (OV-Chase) was engineered using HSQuik technology and tested for spread and efficacy in glioma spheroids. Subcutaneous and intracranial glioma xenografts were utilized to compare antitumor efficacy of OV-Chase, rHsvQ (control), and PBS. Titration of viral particles was performed from OV-treated subcutaneous tumors. Glioma invasion was assessed in collagen-embedded glioma spheroids in vitro and in intracranial tumors. All statistical tests were two sided.


Treatment with Chase-ABC in cultured glioma cells significantly enhanced OV spread in glioma spheroids grown on brain slices (P < 0.0001). Inoculation of subcutaneous glioma xenografts with Chase-expressing OV significantly increased viral titer (>10 times, P = 0.0008), inhibited tumor growth, and significantly increased overall animal survival (P < 0.006) compared with treatment with parental rHsvQ virus. Single OV-Chase administration in intracranial xenografts also resulted in longer median survival of animals than rHsvQ treatment (32 vs. 21 days, P < 0.018). Glioma cell migration and invasion were not increased by OV-Chase treatment.


We conclude that degradation of glioma extracellular matrix with OV-expressing bacterial Chase-ABC enhanced OV spread and antitumor efficacy.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center