Send to

Choose Destination
Plant J. 2011 Jan;65(1):119-130. doi: 10.1111/j.1365-313X.2010.04406.x. Epub 2010 Nov 29.

Protein arginine methylation modulates light-harvesting antenna translation in Chlamydomonas reinhardtii.

Author information

Department of Algae Biotechnology & Bioenergy, Faculty of Biology, Bielefeld University, D-33615 Bielefeld, GermanyDepartment of Proteome & Metabolome Research, Faculty of Biology, Bielefeld University, Bielefeld, Germany.


Methylation of protein arginines represents an important post-translational modification mechanism, which has so far primarily been characterized in mammalian cells. In this work, we successfully identified and characterized arginine methylation as a crucial type of post-translational modification in the activity regulation of the cytosolic translation repressor protein NAB1 in the plant model organism Chlamydomonas reinhardtii. NAB1 represses the cytosolic translation of light-harvesting protein encoding mRNAs by sequestration into translationally silent messenger ribonucleoprotein complexes (mRNPs). Protein arginine methylation of NAB1 could be demonstrated by PRMT1 catalyzed methylation of recombinant NAB1 in vitro, and by immunodetection of methylated NAB1 arginines in vivo. Mass spectrometric analyses of NAB1 purified from C. reinhardtii revealed the asymmetric dimethylation of Arg90 and Arg92 within GAR motif I. Inhibition of arginine methylation by either adenosine-2'-3'-dialdehyde (AdOx) or 7,7'-carbonylbis(azanediyl)bis(4-hydroxynaphthalene-2-sulfonic acid) sodium salt hydrate (AMI-1) caused a dark-green phenotype characterized by the increased accumulation of light-harvesting complex proteins, and indicating a reduced translation repressor activity of NAB1. The extent of NAB1 arginine methylation depends on the growth conditions, with phototrophic growth causing a high methylation state and heterotrophic growth resulting in lowered methylation of the protein. In addition, we could show that NAB1 activity regulation by arginine methylation operates independently from cysteine-based redox control, which has previously been shown to control the activity of NAB1.

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center