Format

Send to

Choose Destination
See comment in PubMed Commons below
Proc Natl Acad Sci U S A. 2011 Jan 4;108(1):415-20. doi: 10.1073/pnas.1012076108. Epub 2010 Dec 20.

Mechanism of RNA stabilization and translational activation by a pentatricopeptide repeat protein.

Author information

1
Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA.

Abstract

Pentatricopeptide repeat (PPR) proteins comprise a large family of helical repeat proteins that bind RNA and modulate organellar RNA metabolism. The mechanisms underlying the functions attributed to PPR proteins are unknown. We describe in vitro studies of the maize protein PPR10 that clarify how PPR10 modulates the stability and translation of specific chloroplast mRNAs. We show that recombinant PPR10 bound to its native binding site in the chloroplast atpI-atpH intergenic region (i) blocks both 5'→3' and 3'→ 5 exoribonucleases in vitro; (ii) is sufficient to define the native processed atpH mRNA 5'-terminus in conjunction with a generic 5'→3' exoribonuclease; and (iii) remodels the structure of the atpH ribosome-binding site in a manner that can account for PPR10's ability to enhance atpH translation. In addition, we show that the minimal PPR10-binding site spans 17 nt. We propose that the site-specific barrier and RNA remodeling activities of PPR10 are a consequence of its unusually long, high-affinity interface with single-stranded RNA, that this interface provides a functional mimic to bacterial small RNAs, and that analogous activities underlie many of the biological functions that have been attributed to PPR proteins.

PMID:
21173259
PMCID:
PMC3017144
DOI:
10.1073/pnas.1012076108
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center