Send to

Choose Destination
See comment in PubMed Commons below
Transgenic Res. 2011 Oct;20(5):989-1001. doi: 10.1007/s11248-010-9473-7. Epub 2010 Dec 18.

Vascular endothelium-specific overexpression of human catalase in cloned pigs.

Author information

Department of Biomedical Sciences, University of Missouri, Columbia, MO 65211, USA.


The objective of this study was to develop transgenic Yucatan minipigs that overexpress human catalase (hCat) in an endothelial-specific manner. Catalase metabolizes hydrogen peroxide (H(2)O(2)), an important regulator of vascular tone that contributes to diseases such as atherosclerosis and preeclampsia. A large animal model to study reduced endothelium-derived H(2)O(2) would therefore generate valuable translational data on vascular regulation in health and disease. Yucatan minipig fetal fibroblasts stably co-transfected with human catalase (Tie2-hCat) and eGFP expression constructs were isolated into single-cell populations. The presence of the Tie2-hCat transgene in individual colonies of fibroblasts was determined by PCR. Transgenic fibroblasts were used for nuclear transfer into enucleated oocytes by electrofusion. A minimum of 140 cloned embryos were transferred per surrogate sow (n = 4). All four surrogates maintained pregnancies and piglets were delivered by cesarean section. Nine male piglets from three of the four litters carried the Tie2-hCat transgene. Expression of human catalase mRNA and overall elevated catalase protein in isolated umbilical endothelial cells from transgenic piglets were verified by RT-PCR and western blot, respectively, and endothelial localization was confirmed by immunohistochemistry. Increased enzymatic activity of catalase in transgenic versus wild-type endothelial cells was inferred based on significantly reduced levels of H(2)O(2) in culture. The similarities in swine and human cardiovascular anatomy and physiology will make this pig model a valuable source of information on the putative role of endothelium-derived H(2)O(2) in vasodilation and in the mechanisms underlying vascular health and disease.

[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons


    Supplemental Content

    Full text links

    Icon for Springer Icon for PubMed Central
    Loading ...
    Support Center