Format

Send to

Choose Destination
J Interferon Cytokine Res. 2011 Jan;31(1):79-87. doi: 10.1089/jir.2010.0076. Epub 2010 Dec 19.

Human MxA protein: an interferon-induced dynamin-like GTPase with broad antiviral activity.

Author information

1
Department of Virology, Institute of Medical Microbiology and Hygiene, University of Freiburg, Freiburg, Germany. otto.haller@uniklinik-freiburg.de

Abstract

The human myxovirus resistance protein 1 (MxA) is a key mediator of the interferon-induced antiviral response against a wide range of viruses. MxA expression is tightly regulated by type I and type III interferons, requires signal transducer and activator of transcription 1 signaling, and is not inducible directly by viruses or other stimuli. MxA shares many properties with the dynamin superfamily of large GTPases. It consists of 3 domains, namely, an N-terminal GTPase domain that binds and hydrolyses GTP, a middle domain mediating self-assembly, and a carboxy-terminal GTPase effector domain. Like dynamin, MxA has the ability to self-assemble into highly ordered oligomers and to form ring-like structures around liposomes, inducing liposome tubulation. The structural details of MxA oligomerization have recently been elucidated, providing new insights into the antiviral mechanism of this mechanochemical enzyme. The structural and functional data suggest that MxA targets the nucleoprotein of MxA-sensitive viruses. Thus, MxA may form oligomeric rings around tubular nucleocapsid structures, thereby inhibiting their transcriptional and replicative function. Here we briefly review the most salient features of MxA expression and antiviral function.

PMID:
21166595
DOI:
10.1089/jir.2010.0076
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Atypon
Loading ...
Support Center