Perturbative analysis of coherent combining efficiency with mismatched lasers

Opt Express. 2010 Nov 22;18(24):25403-14. doi: 10.1364/OE.18.025403.

Abstract

Coherent combining efficiency is examined analytically for large arrays of non-ideal lasers combined using filled aperture elements with nonuniform splitting ratios. Perturbative expressions are developed for efficiency loss from combiner splitting ratios, power imbalance, spatial misalignments, beam profile nonuniformities, pointing and wavefront errors, depolarization, and temporal dephasing of array elements. It is shown that coupling efficiency of arrays is driven by non-common spatial aberrations, and that common-path aberrations have no impact on coherent combining efficiency. We derive expressions for misalignment losses of Gaussian beams, providing tolerancing metrics for co-alignment and uniformity of arrays of single-mode fiber lasers.