Format

Send to

Choose Destination
See comment in PubMed Commons below
Med Phys. 2010 Nov;37(11):5876-86.

Three-dimensional canine heart model for cardiac elastography.

Author information

1
Department of Medical Physics, The University of Wisconsin-Madison, Madison, Wisconsin 53706, USA.

Abstract

PURPOSE:

A three-dimensional finite element analysis based canine heart model is introduced that would enable the assessment of cardiac function.

METHODS:

The three-dimensional canine heart model is based on the cardiac deformation and motion model obtained from the Cardiac Mechanics Research Group at UCSD. The canine heart model is incorporated into ultrasound simulation programs previously developed in the laboratory, enabling the generation of simulated ultrasound radiofrequency data to evaluate algorithms for cardiac elastography. The authors utilize a two-dimensional multilevel hybrid method to estimate local displacements and strain from the simulated cardiac radiofrequency data.

RESULTS:

Tissue displacements and strains estimated along both the axial and lateral directions (with respect to the ultrasound scan plane) are compared to the actual scatterer movement obtained using the canine heart model. Simulation and strain estimation algorithms combined with the three-dimensional canine heart model provide high resolution displacement and strain curves for improved analysis of cardiac function. The use of principal component analysis along parasternal cardiac short axis views is also presented.

CONCLUSIONS:

A 3D cardiac deformation model is proposed for evaluating displacement tracking and strain estimation algorithms for cardiac strain imaging. Validation of the model is shown using ultrasound simulations to generate axial and lateral displacement and strain curves that are similar to the actual axial and lateral displacement and strain curves.

PMID:
21158300
PMCID:
PMC2980546
DOI:
10.1118/1.3496326
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Wiley Icon for PubMed Central
    Loading ...
    Support Center