Cytochrome P450 metabolizing fatty acids in plants: characterization and physiological roles

FEBS J. 2011 Jan;278(2):195-205. doi: 10.1111/j.1742-4658.2010.07948.x. Epub 2010 Dec 13.

Abstract

In plants, fatty acids (FA) are subjected to various types of oxygenation reactions. Products include hydroxyacids, as well as hydroperoxides, epoxides, aldehydes, ketones and α,ω-diacids. Many of these reactions are catalysed by cytochrome P450s (P450s), which represent one of the largest superfamilies of proteins in plants. The existence of P450-type metabolizing FA enzymes in plants was established approximately four decades ago in studies on the biosynthesis of lipid polyesters. Biochemical investigations have highlighted two major characteristics of P450s acting on FAs: (a) they can be inhibited by FA analogues carrying an acetylenic function, and (b) they can be enhanced by biotic and abiotic stress at the transcriptional level. Based on these properties, P450s capable of producing oxidized FA have been identified and characterized from various plant species. Until recently, the vast majority of characterized P450s acting on FAs belonged to the CYP86 and CYP94 families. In the past five years, rapid progress in the characterization of mutants in the model plant Arabidopsis thaliana has allowed the identification of such enzymes in many other P450 families (i.e. CYP703, CYP704, CYP709, CYP77, CYP74). The presence in a single species of distinct enzymes characterized by their own regulation and catalytic properties raised the question of their physiological meaning. Functional studies in A. thaliana have demonstrated the involvement of FA hydroxylases in the synthesis of the protective biopolymers cutin, suberin and sporopollenin. In addition, several lines of evidence discussed in this minireview are consistent with P450s metabolizing FAs in many aspects of plant biology, such as defence against pathogens and herbivores, development, catabolism or reproduction.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Cytochrome P-450 Enzyme System / chemistry
  • Cytochrome P-450 Enzyme System / physiology*
  • Fatty Acids / metabolism*
  • Plants / enzymology*

Substances

  • Fatty Acids
  • Cytochrome P-450 Enzyme System