Format

Send to

Choose Destination
Eur Cell Mater. 2010 Dec 10;20:356-66.

Promoting external inosculation of prevascularised tissue constructs by pre-cultivation in an angiogenic extracellular matrix.

Author information

1
Institute for Clinical & Experimental Surgery, University of Saarland, D-66421 Homburg/Saar, Germany. matthias.laschke@uniklinik-saarland.de

Abstract

The engineering of preformed microvessels offers the promising opportunity to rapidly vascularise implanted tissue constructs by the process of inosculation. Herein, we analyzed whether this process may further be accelerated by cultivation of prevascularised tissue constructs in Matrigel before implantation. Nano-size hydroxyapatite particles/poly(ester-urethane) scaffolds were implanted into the flank of FVB/N-TgN (Tie2/GFP) 287 Sato mice to allow the ingrowth of a granulation tissue with green fluorescent protein (GFP)-positive blood vessels. After harvesting, these prevascularised constructs were then transferred into dorsal skinfold chambers of FVB/N recipient mice to study the process of inosculation. The constructs were implanted directly after embedding in Matrigel or after 3 days of cultivation in the extracellular matrix. Matrigel-free constructs served as control. Cultivation in Matrigel resulted in the outgrowth of CD31/GFP-positive vascular sprouts. Vascularisation of these constructs was markedly improved when compared to the other two groups, as indicated by a significantly elevated functional microvessel density between days 6 to 14 after implantation into the dorsal skinfold chamber. This was associated with an increased number of GFP-positive blood vessels growing into the surrounding host tissue. Thus, the blood supply to prevascularised tissue constructs can be accelerated by their pre-cultivation in an angiogenic extracellular matrix, promoting external inosculation of the preformed microvascular networks with the host microvasculature.

PMID:
21154242
[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for European Cells and Materials Ltd
Loading ...
Support Center