Format

Send to

Choose Destination
See comment in PubMed Commons below
Nanoscale. 2011 Feb;3(2):446-89. doi: 10.1039/c0nr00403k. Epub 2010 Dec 10.

Conjugated polymers/semiconductor nanocrystals hybrid materials--preparation, electrical transport properties and applications.

Author information

1
INAC/SPrAM (UMR 5819 CEA-CNRS-Univ. J. Fourier-Grenoble I), Laboratoire d'Electronique Moléculaire Organique et Hybride, CEA Grenoble, 17 Rue des Martyrs, 38054, Grenoble Cedex 9, France. peter.reiss@cea.fr adam.pron@cea.fr

Abstract

This critical review discusses specific preparation and characterization methods applied to hybrid materials consisting of π-conjugated polymers (or oligomers) and semiconductor nanocrystals. These materials are of great importance in the quickly growing field of hybrid organic/inorganic electronics since they can serve as active components of photovoltaic cells, light emitting diodes, photodetectors and other devices. The electronic energy levels of the organic and inorganic components of the hybrid can be tuned individually and thin hybrid films can be processed using low cost solution based techniques. However, the interface between the hybrid components and the morphology of the hybrid directly influences the generation, separation and transport of charge carriers and those parameters are not easy to control. Therefore a large variety of different approaches for assembling the building blocks--conjugated polymers and semiconductor nanocrystals--has been developed. They range from their simple blending through various grafting procedures to methods exploiting specific non-covalent interactions between both components, induced by their tailor-made functionalization. In the first part of this review, we discuss the preparation of the building blocks (nanocrystals and polymers) and the strategies for their assembly into hybrid materials' thin films. In the second part, we focus on the charge carriers' generation and their transport within the hybrids. Finally, we summarize the performances of solar cells using conjugated polymer/semiconductor nanocrystals hybrids and give perspectives for future developments.

PMID:
21152569
DOI:
10.1039/c0nr00403k
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Royal Society of Chemistry
    Loading ...
    Support Center