Send to

Choose Destination
See comment in PubMed Commons below
Int J Mol Sci. 2010 Nov 2;11(11):4348-60. doi: 10.3390/ijms11114348.

Myricetin protects cells against oxidative stress-induced apoptosis via regulation of PI3K/Akt and MAPK signaling pathways.

Author information

School of Medicine and Applied Radiological Science Research Institute, Jeju National University, Jeju 690-756, Korea; E-Mails: (K.A.K); (Z.H.W); (R.Z); (M.J.P); (K.C.K).


Recently, we demonstrated that myricetin exhibits cytoprotective effects against H(2)O(2)-induced cell damage via its antioxidant properties. In the present study, myricetin was found to inhibit H(2)O(2)-induced apoptosis in Chinese hamster lung fibroblast (V79-4) cells, as shown by decreased apoptotic bodies, nuclear fragmentation, sub-G(1) cell population, and disruption of mitochondrial membrane potential (Δψ(m)), which are increased in H(2)O(2)-treated cells. Western blot data showed that in H(2)O(2)-treated cells, myricetin increased the level of Bcl-2, which is an anti-apoptotic factor, and decreased the levels of Bax, active caspase-9 and -3, which are pro-apoptotic factors. And myricetin inhibited release of cytochrome c from mitochondria to cytosol in H(2)O(2)-treated cells. Myricetin-induced survival correlated with Akt activity, and the rescue of cells by myricetin treatment against H(2)O(2)-induced apoptosis was inhibited by the specific PI3K (phosphoinositol-3-kinase) inhibitor. Myricetin-mediated survival also inhibited the activation of p38 mitogen activated protein kinase (MAPK) and c-Jun N-terminal kinase (JNK), which are members of MAPK. Our studies suggest that myricetin prevents oxidative stress-induced apoptosis via regulation of PI3K/Akt and MAPK signaling pathways.


cytoprotective effect; myricetin; oxidative stress

[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for PubMed Central
    Loading ...
    Support Center