Send to

Choose Destination
Plant J. 2010 Dec;64(6):936-47. doi: 10.1111/j.1365-313X.2010.04384.x. Epub 2010 Nov 17.

A tomato (Solanum lycopersicum) APETALA2/ERF gene, SlAP2a, is a negative regulator of fruit ripening.

Author information

Boyce Thompson Institute for Plant Research, Tower Road, Cornell University Campus, Ithaca, NY 14853, USA.


The transition of fleshy fruit maturation to ripening is regulated by exogenous and endogenous signals that coordinate the transition of the fruit to a final state of attractiveness to seed dispersing organisms. Tomato is a model for biology and genetics regulating specific ripening pathways including ethylene, carotenoids and cell wall metabolism in addition to upstream signaling and transcriptional regulators. Ripening-associated transcription factors described to date including the RIN-MADS, CLEAR NON-RIPENING, TAGL1 and LeHB-1 genes all encode positive regulators of ripening phenomena. Here we describe an APETALA2 transcription factor (SlAP2a) identified through transcriptional profiling of fruit maturation that is induced during, and which negatively regulates, tomato fruit ripening. RNAi repression of SlAP2a results in fruits that over-produce ethylene, ripen early and modify carotenoid accumulation profiles by altering carotenoid pathway flux. These results suggest that SlAP2a functions during normal tomato fruit ripening as a modulator of ripening activity and acts to balance the activities of positive ripening regulators.

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center