Send to

Choose Destination
See comment in PubMed Commons below
Hum Gene Ther. 2011 Aug;22(8):935-49. doi: 10.1089/hum.2010.121. Epub 2011 Mar 13.

Recombinant adeno-associated virus-mediated gene transfer for the potential therapy of adenosine deaminase-deficient severe combined immune deficiency.

Author information

  • 1Department of Pediatrics and Powell Gene Therapy Center, University of Florida College of Medicine, Gainesville, FL 32610, USA.


Severe combined immune deficiency due to adenosine deaminase (ADA) deficiency is a rare, potentially fatal pediatric disease, which results from mutations within the ADA gene, leading to metabolic abnormalities and ultimately profound immunologic and nonimmunologic defects. In this study, recombinant adeno-associated virus (rAAV) vectors based on serotypes 1 and 9 were used to deliver a secretory version of the human ADA (hADA) gene to various tissues to promote immune reconstitution following enzyme expression in a mouse model of ADA deficiency. Here, we report that a single-stranded rAAV vector, pTR2-CB-Igκ-hADA, (1) facilitated successful gene delivery to multiple tissues, including heart, skeletal muscle, and kidney, (2) promoted ectopic expression of hADA, and (3) allowed enhanced serum-based enzyme activity over time. Moreover, the rAAV-hADA vector packaged in serotype 9 capsid drove partial, prolonged, and progressive immune reconstitution in ADA-deficient mice. Overview Summary Gene therapies for severe combined immune deficiency due to adenosine deaminase (ADA) deficiency (ADA-SCID) over two decades have exclusively involved retroviral vectors targeted to lymphocytes and hematopoietic progenitor cells. These groundbreaking gene therapies represented an unprecedented revolution in clinical medicine but in most cases did not fully correct the immune deficiency and came with the potential risk of insertional mutagenesis. Alternatively, recombinant adeno-associated virus (rAAV) vectors have gained attention as valuable tools for gene transfer, having demonstrated no pathogenicity in humans, minimal immunogenicity, long-term efficacy, ease of administration, and broad tissue tropism (Muzyczka, 1992 ; Flotte et al., 1993 ; Kessler et al., 1996 ; McCown et al., 1996 ; Lipkowitz et al., 1999 ; Marshall, 2001 ; Chen et al., 2003 ; Conlon and Flotte, 2004 ; Griffey et al., 2005 ; Pacak et al., 2006 ; Stone et al., 2008 ; Liu et al., 2009 ; Choi et al., 2010 ). Currently, rAAV vectors are being utilized in phase I/II clinical trials for cystic fibrosis, α-1 antitrypsin deficiency, Canavan's disease, Parkinson's disease, hemophilia, limb-girdle muscular dystrophy, arthritis, Batten's disease, and Leber's congenital amaurosis (Flotte et al., 1996 , 2004 ; Kay et al., 2000 ; Aitken et al., 2001 ; Wagner et al., 2002 ; Manno et al., 2003 ; Snyder and Francis, 2005 ; Maguire et al., 2008 ; Cideciyan et al., 2009 ). In this study, we present preclinical data to support the viability of an rAAV-based gene transfer strategy for cure of ADA-SCID. We report efficient transduction of a variety of postmitotic target tissues in vivo, subsequent human ADA (hADA) expression, and enhanced hADA secretion in tissues and blood, with increasing peripheral lymphocyte populations over time.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Mary Ann Liebert, Inc.
    Loading ...
    Support Center