Send to

Choose Destination
J Neurochem. 2011 Feb;116(4):522-9. doi: 10.1111/j.1471-4159.2010.07131.x. Epub 2011 Jan 24.

Wnt signaling pathway overcomes the disruption of neuronal differentiation of neural progenitor cells induced by oligomeric amyloid β-peptide.

Author information

The Neuroscience Laboratory, Felsenstein Medical Research Center, Petach Tikva, Tel Aviv University, Tel Aviv, Israel.


Neural stem cells give rise to new hippocampal neurons throughout adulthood. Defects in neurogenesis are associated with cognitive dysfunctions, such as Alzheimer disease (AD). Our understanding of the signals controlling this process is limited. The present in vitro study explored the manner in which the Wnt signaling pathway regulates the differentiation of hippocampal progenitors (HPs) into neurons under the influence of amyloid β(42) (Aβ(42) ). The results showed that oligomeric Aβ(42) reduced neuronal differentiation. This process was accompanied by a reduction in active β-catenin levels and proneural gene expression. The addition of Wnt3a increased the neuronal differentiation of Aβ(42) -treated HPs, at the expense of astrocyte differentiation. The effect of Wnt signaling was attributable to progenitor cell differentiation to the neuronal lineage, and not to increased proliferation or rescue of neurons. The interruption of Wnt signaling by oligomeric Aβ(42) may have clinical implications for the treatment of impaired neurogenesis in AD.

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center