Format

Send to

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2011 Feb 11;286(6):4809-18. doi: 10.1074/jbc.M110.152900. Epub 2010 Dec 6.

Endoplasmic reticulum stress response mediated by the PERK-eIF2(alpha)-ATF4 pathway is involved in osteoblast differentiation induced by BMP2.

Author information

1
From the Department of Biochemistry, Division of Genome Radiobiology and Medical Science, Graduate School of Biomedical Science, University of Hiroshima, Hiroshima 734-8553, Japan.

Abstract

To avoid excess accumulation of unfolded proteins in the endoplasmic reticulum (ER), eukaryotic cells have signaling pathways from the ER to the cytosol or nucleus. These processes are collectively termed the ER stress response. Double stranded RNA activated protein kinase (PKR)-like endoplasmic reticulum kinase (PERK) is a major transducer of the ER stress response and directly phosphorylates eIF2α, resulting in translational attenuation. Phosphorylated eIF2α specifically promotes the translation of the transcription factor ATF4. ATF4 plays important roles in osteoblast differentiation and bone formation. Perk(-/-) mice are reported to exhibit severe osteopenia, and the phenotypes observed in bone tissues are very similar to those of Atf4(-/-) mice. However, the involvement of the PERK-eIF2α-ATF4 signaling pathway in osteogenesis is unclear. Phosphorylated eIF2α and ATF4 protein levels were attenuated in Perk(-/-) calvariae, and the gene expression levels of osteocalcin (Ocn) and bone sialoprotein (Bsp), which are targets for ATF4, were also down-regulated. Treatment of wild-type primary osteoblasts with BMP2, which is required for osteoblast differentiation, induced ER stress, leading to an increase in ATF4 protein expression levels. In contrast, the level of ATF4 in Perk(-/-) osteoblasts was severely diminished. The results indicate that PERK signaling is required for ATF4 activation during osteoblast differentiation. Perk(-/-) osteoblasts exhibited decreased alkaline phosphatase activities and delayed mineralized nodule formation relative to wild-type cultures. These abnormalities were almost completely restored by the introduction of ATF4 into Perk(-/-) osteoblasts. Taken together, ER stress occurs during osteoblast differentiation and activates the PERK-eIF2α-ATF4 signaling pathway followed by the promotion of gene expression essential for osteogenesis, such as Ocn and Bsp.

PMID:
21135100
PMCID:
PMC3039352
DOI:
10.1074/jbc.M110.152900
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center