Format

Send to

Choose Destination
See comment in PubMed Commons below
Med Sci Sports Exerc. 2011 Jun;43(6):935-42. doi: 10.1249/MSS.0b013e3182061cdb.

Cardiac output is not related to the slowed O2 uptake kinetics in type 2 diabetes.

Author information

1
Department of Physiology, Trinity College Dublin, Dublin, Ireland.

Abstract

PURPOSE:

This study aimed to investigate whether cardiac output (CO) responses were related to VO2 kinetics during cycling in type 2 diabetes.

METHODS:

A total of 9 middle-aged women with uncomplicated type 2 diabetes, 9 nondiabetic overweight women, and 11 nondiabetic lean women were recruited. Initially, the ventilatory threshold (VT) and peak VO2 were determined during a maximal graded test. Then, on two separate days, subjects completed three 7-min bouts of constant-load cycling at each of three intensities: 50% VT, 80% VT, and midpoint between VT and peak VO2 (50% Δ). CO (inert gas rebreathing) was recorded at 30 and 240 s of an additional bout at each intensity. VO2 kinetic parameters were determined by fitting a biexponential (50% VT and 80% VT) or triexponential (50% Δ) function to the VO2 data.

RESULTS:

Peak VO2 was significantly lower in type 2 diabetes compared with the two nondiabetic groups (P < 0.05). The time constant of phase 2 was significantly greater (P < 0.05) in type 2 diabetes compared with the nondiabetic heavy and lean groups at 50% VT (34.2 ± 15.7 vs 15.4 ± 7.3 and 20.2 ± 9.7 s) and 80% VT (39.1 ± 9.0 vs 24.8 ± 8.8 and 36.8 ± 7.9 s), but none of the VO2 kinetic parameters were different at 50% Δ. CO responses during exercise were not different among the three groups, and at 80% VT, the change in CO from 30 to 240 s was significantly larger in type 2 diabetes compared with the two nondiabetic groups.

CONCLUSIONS:

The results confirm that type 2 diabetes slows the dynamic response of VO2 during light and moderate relative intensity exercise in females but that this occurs in the absence of any slowing of the CO response during the initial period of exercise.

PMID:
21131874
DOI:
10.1249/MSS.0b013e3182061cdb
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Lippincott Williams & Wilkins
    Loading ...
    Support Center