Format

Send to

Choose Destination
See comment in PubMed Commons below
J Health Econ. 2011 Jan;30(1):214-9. doi: 10.1016/j.jhealeco.2010.10.008. Epub 2010 Nov 10.

On the consistent measurement of attainment and shortfall inequality.

Author information

1
Department of Economics, University of Oregon, Eugene, OR 97403-1285, USA. plambert@uoregon.edu

Abstract

In measuring inequality of a bounded variable such as health status, one can focus on attainments or shortfalls. However, rankings of social states by attainment and shortfall inequality do not necessarily mirror one another. We propose a requirement, that attainment inequality and shortfall inequality be measured consistently, and we examine the performance of partial orderings and indices of inequality in this respect. For relative inequality and all currently documented intermediate inequality concepts, the orderings fail our consistency requirement, as do all indices which respect these orderings. However, the absolute inequality partial ordering satisfies consistency. We identify two classes of indices of absolute inequality, one containing rank-independent and the other rank-dependent indices, which measure attainment and shortfall inequality consistently (in fact identically). The only subgroup decomposable inequality index, of any type, which measures attainment and shortfall inequality consistently is the variance. We discuss implications for the study of pure health inequality.

PMID:
21129796
DOI:
10.1016/j.jhealeco.2010.10.008
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center