Format

Send to

Choose Destination
See comment in PubMed Commons below
J Appl Physiol (1985). 2011 Mar;110(3):730-7. doi: 10.1152/japplphysiol.00575.2010. Epub 2010 Dec 2.

Lymphocyte enzymatic antioxidant responses to oxidative stress following high-intensity interval exercise.

Author information

1
Dept. of Nutrition Sciences, Univ. of Alabama at Birmingham, 1675 University Blvd., WEBB 413, Birmingham, AL 35294, USA. grdnfs@uab.edu

Abstract

The purposes of this study were to 1) examine the immune and oxidative stress responses following high-intensity interval training (HIIT); 2) determine changes in antioxidant enzyme gene expression and enzyme activity in lymphocytes following HIIT; and 3) assess pre-HIIT, 3-h post-HIIT, and 24-h post-HIIT lymphocyte cell viability following hydrogen peroxide exposure in vitro. Eight recreationally active males completed three identical HIIT protocols. Blood samples were obtained at preexercise, immediately postexercise, 3 h postexercise, and 24 h postexercise. Total number of circulating leukocytes, lymphocytes, and neutrophils, as well as lymphocyte antioxidant enzyme activities, gene expression, cell viability (CV), and plasma thiobarbituric acid-reactive substance (TBARS) levels, were measured. Analytes were compared using a three (day) × four (time) ANOVA with repeated measures on both day and time. The a priori significance level for all analyses was P < 0.05. Significant increases in superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPX) activities were observed in lymphocytes following HIIT. No significant increases in lymphocyte SOD, CAT, or GPX gene expression were found. A significant increase in TBARS was found immediately post-HIIT on days 1 and 2. Lymphocyte CV in vitro significantly increased on days 2 and 3 compared with day 1. Additionally, there was a significant decrease in CV at 3 h compared with pre- and 24 h postexercise. These findings indicate lymphocytes respond to oxidative stress by increasing antioxidant enzyme activity. Additionally, HIIT causes oxidative stress but did not induce a significant postexercise lymphocytopenia. Analyses in vitro suggest that lymphocytes may become more resistant to subsequent episodes of oxidative stress. Furthermore, the analysis in vitro confirms that lymphocytes are more vulnerable to cytotoxic molecules during recovery from exercise.

PMID:
21127208
DOI:
10.1152/japplphysiol.00575.2010
[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments

    Supplemental Content

    Full text links

    Icon for Atypon
    Loading ...
    Support Center