Send to

Choose Destination
See comment in PubMed Commons below
J Microsc. 2011 Jan;241(1):101-10. doi: 10.1111/j.1365-2818.2010.03413.x.

Minimizing light exposure with the programmable array microscope.

Author information

  • 1Laboratory of Cellular Dynamics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Göttingen, Germany.


The exposure of fluorophores to intense illumination in a microscope often results in photobleaching and phototoxicity, thus constituting a major limiting factor in time lapse live cell or single molecule imaging. Laser scanning confocal microscopes are particularly prone to this problem, inasmuch as they require high irradiances to compensate for the inherently low duty cycle of point scanning systems. In the attempt to maintain adequate speed and signal-to-noise ratios, the fluorophores are often driven into saturation, thereby generating a nonlinear response. One approach for reducing photodegradation in the laser scanning confocal microscope is represented by controlled light exposure microscopy, introduced by Manders and colleagues. The strategy is to reduce the illumination intensity in both background areas (devoid of information) as well as in bright foreground regions, for which an adequate signal-to-noise ratio can be achieved with lower excitation levels than those required for the less intense foreground pixels/voxels. Such a variable illumination scheme can also be exploited in widefield microscopes that employ lower irradiance but higher illumination duty cycles. We report here on the adaptation of the controlled light exposure microscopy principle to the programmable array microscope, which achieves optical sectioning by use of a spatial light modulator (SLM) in an image plane as a programmable mask for illumination and conjugate (and nonconjugate) detection. By incorporating the basic controlled light exposure microscopy concept for minimizing exposure, we have obtained a reduction in the rate of photobleaching of up to ~5-fold, while maintaining an image quality comparable to regular imaging with the programmable array microscope.

© 2010 The Authors Journal of Microscopy © 2010 The Royal Microscopical Society.

[PubMed - indexed for MEDLINE]
Free full text

LinkOut - more resources

Full Text Sources

Other Literature Sources

Molecular Biology Databases

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Wiley
    Loading ...
    Write to the Help Desk