Format

Send to

Choose Destination
See comment in PubMed Commons below
Appl Environ Microbiol. 2011 Feb;77(3):926-33. doi: 10.1128/AEM.01255-10. Epub 2010 Nov 29.

Ecological basis of the interaction between Pseudozyma flocculosa and powdery mildew fungi.

Author information

1
Centre de Recherche en Horticulture, Université Laval, Québec, Québec, Canada G1V 0A6.

Abstract

In this work, we sought to understand how glycolipid production and the availability of nutrients could explain the ecology of Pseudozyma flocculosa and its biocontrol activity. For this purpose, we compared the development of P. flocculosa to that of a close relative, the plant pathogen Ustilago maydis, under different environmental conditions. This approach was further supported by measuring the expression of cyp1, a pivotal gene in the synthesis of unique antifungal cellobiose lipids of both fungi. On healthy cucumber and tomato plants, the expression of cyp1 remained unchanged over time in P. flocculosa and was undetected in U. maydis. At the same time, green fluorescent protein (GFP) strains of both fungi showed only limited green fluorescence on control leaves. On powdery mildew-infected cucumber leaves, P. flocculosa induced a complete collapse of the pathogen colonies, but glycolipid production, as studied by cyp1 expression, was still comparable to that of controls. In complete contrast, cyp1 was upregulated nine times when P. flocculosa was applied to Botrytis cinerea-infected leaves, but the biocontrol fungus did not develop very well on the pathogen. Analysis of the possible nutrients that could stimulate the growth of P. flocculosa on powdery mildew structures revealed that the complex Zn/Mn played a key role in the interaction. Other related fungi such as U. maydis do not appear to have the same nutritional requirements and hence lack the ability to colonize powdery mildews. Whether production of antifungal glycolipids contributes to the release of nutrients from powdery mildew colonies is unclear, but the specificity of the biocontrol activity of P. flocculosa toward Erysiphales does appear to be more complex than simple antibiosis.

PMID:
21115715
PMCID:
PMC3028749
DOI:
10.1128/AEM.01255-10
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center